
Spatial-Temporal Scientific Data Clustering via
Deep Convolutional Neural Network

Jianxin Sun1, Chunxia Wu2, Yufeng Ge2, Yusong Li3, Hongfeng Yu1

1 Department of Computer Science and Engineering
2 Department of Biological Systems Engineering

3 Department of Civil and Environmental Engineering
University of Nebraska-Lincoln, Lincoln, NE, USA

Abstract—We explore the usage of deep convolutional neural
network for clustering the time steps of a spatial-temporal
scientific dataset. Our approach first takes the scientific dataset
as training data and trains a deep convolutional autoencoder. A
low-dimensional feature space or latent space can be extracted
by inferencing the encoding part of the network. As a result,
each time step is transformed into a feature descriptor that can
be compared with each other in the feature space. In this way,
we can cluster time steps according to their feature descriptors,
and each group of time steps has a similar characterization. We
demonstrate the effectiveness of our approach using a real-world
simulation dataset of water contamination. Multiple variables
and their combinations of this dataset are fed into our approach.
The trained network enables the clustering of the time steps
and facilitates scientists to examine their large spatial-temporal
datasets.

Index Terms—spatial-temporal scientific data, clustering, deep
convolutional neural network, autoencoder, feature descriptor

I. INTRODUCTION

The advances in observation and computing techniques
enable scientists to obtain datasets with higher spatial-temporal
resolutions, leading to detailed discoveries in various domains.
However, these datasets are typically multivariate and time-
varying. It becomes an increasingly challenging problem for
scientists to effectively and efficiently extract the essential
information from these vast amounts of datasets.

A feasible way is to cluster the time steps of a dataset into
different groups, and each group contains a set of continuous
time steps that have a similar characterization of data during
the period. This way can allow scientists to explore data in
a hierarchical fashion such that they can quickly gain an
overview of a dataset, and effectively select different groups
of time steps for a closer examination.

Researchers have developed several approaches to achieve
this goal. Some methods are based on the comparison between
time steps [1], [2], which mostly rely on the local information,
and may not capture dynamics across a wider period. Some
methods are based on the information theory [3], [4], which is
more sophisticated but may incur a high computational cost.

In this paper, we develop an autoencoder based approach
to learn feature descriptors of time steps of a spatial-temporal
scientific dataset in an unsupervised fashion. Given a dataset,
to reduce the computational cost, we extract 2D slices from
each volume. In the first training stage, these 2D slices are fed
into an autoencoder for training its deep convolutional neural

networks. After training, a low-dimensional feature space (or
latent space) is generated by the autoencoder. Then, in the
inferencing stage, the trained network takes each time step
as input and generates the corresponding vectors in the latent
space. The generated vectors become a feature descriptor of a
time step. We compute the distance of these feature descriptors
in the feature space, cluster them into different groups, and
thereby facilitate scientists to explore different clusters and
examine the details in a cluster. Our preliminary study shows
promising results of our approach with a real-world simulation
of contamination of groundwater.

II. RELATED WORK

One of the main characters of complex scientific data set
is its high dimensionality. Unsupervised learning methods are
widely used to perform dimensionality reduction for better
clustering the data in a lower-dimensional space. With the
emerging of deep learning, many deep learning based methods,
such as autoencoder and RBM (Restricted Boltzmann Ma-
chine), are proposed and implemented with promising results
in various domains [5]–[7]. Autoencoder consists of fully
connected dense layers and struggles to provide the best
performance to deal with spatial-temporal data sets where
values of neighboring data points are highly correlated.

Inspired by the effectiveness of 2D convolutional layers in
deep learning network for handling 2D images, 3D convolu-
tional autoencoder becomes a natural unsupervised learning
method to deal with 3D data [8]. However, 3D convolution
is computational expensive as it has a complexity of O(N3)
where N is the size of the input 3D cube. Some works make
a compromise to keep using 2D convolutional autoencoder by
extracting a 2D representation from 3D data. For example,
Chen et al. [9] directly used single 2D CT scan without
considering the spatial relation across neighboring scan in
sequence. Zhu et al. [10] simply projected original 3D data
into 2D space with inevitable information loss. It is critical
to design a effective and efficient learning architecture when
dealing with large spatial-temporal scientific dataset.

Recently, deep learning has been exploited in scientific data
analysis and visualization. Han et al. [11] used autoencoder
to cluster and select streamlines and stream surfaces. Berger
et al. [12] employed Generative Adversarial Network (GAN)
to facilitate transfer function designs for volume rendering.

Fig. 1. The major components of our approach.

He et al. [13] presented a deep learning based surrogate
model to support the parameter space exploration for ensemble
simulations that are visualized in situ.

III. DEEP LEARNING ARCHITECTURE

In this work, we generate a feature descriptor for each
time step of a spatial-temporal scientific data, and measure
the similarities among the time steps based on their feature
descriptors. Then, we partition the time steps of the dataset into
different groups, where each group of time steps has similar
feature descriptors.

Figure 1 shows the architecture of our approach that consists
of the following major components. First, in the training stage,
we train an autoencoder of deep neural network with convolu-
tional and transposed convolutional layers using batches of an
input 3D scientific dataset. Through the training, parameters
of the network are adjusted by backpropagation such that
the network can regenerate the input on the output side.
Second, in the inferencing stage, each time step is fed into
the encoder of the trained network and is then calculated
into a set of low-dimensional vectors (i.e., feature descriptor)
where the dynamics across the time steps of the dataset can
be summarized. Third, we cluster the time steps according to
the distributions of their feature descriptors.

A. Data Preprocessing

We consider a 3D time-varying scientific dataset in this
work. Each time step Dt of the dataset contains multiple 3D
volumes, and each volume Vt(α) corresponds to a variable
α. To reduce the computational cost of training, we extract
a set of even-spacing 2D slices from each 3D volume at a
time step. In this work, there are 8 slices St = {st1 , ..., st8}
for each 3D volume, and we use them as an instance to
represent the volume. The 2D slices of all time steps are used
as the training set. Before being fed into the deep learning
autoencoder, all 2D slices are standardized. We scale each slice
sti such that its size is a square shape, which can simplify the
2D convolutional operation in the deep neural network. For a
multivariate dataset, each entry of a 2D slice may contain one
or more input values that are specified by users.

B. Feature Space Learning

We exploit autoencoder as the main unsupervised learning
method to derive the feature space. An autoencoder is used to

extract a low-dimensional feature space [14]. A convolutional
autoencoder considers the spatial information of input objects,
and it is suitable for effectively extracting a feature space for
objects with spatial correlations that are commonly inherent
in spatial-temporal scientific datasets. An typical autoencoder
consists of encoder and decoder. A loss function is used to
minimize the difference between the input of the encoder and
the output of the decoder. Since the value of each position in
3D volume is highly correlated with its neighboring points, we
utilize convolutional neural network to utilize the local spatial
information.

Figure 2 shows the detailed structure of the autoencoder
with 2D convolutional neural network. The input is 2D data
array from the slices of the 3D volume in the x-y plane. The
2D convolutional structure is composed of 3 convolutional lay-
ers and 3 transposed convolutional layers. We design a feature
map with different size for each downstream convolutional
layer. The same structure is also used for the 3 transposed
convolutional layers. The encoding convolutional network is
followed by fully connected layers to extract the feature space
or latent space. In our work, we set the latent space as a 2D
space. The dimension of the input layer depends on the size
of our data. We use tanh as the activation function, and the
mean squared errors (MSE) as a metric of the loss function.

C. Feature Descriptor Inferencing

After we obtain the trained network, we use it to generate
the feature descriptor for each time step through inferencing.
For each slice sti extracted from a 3D volume, we feed it into
the trained encoder and generate a vector pti in the 2D latent
space. Therefore, we can obtain 8 2D vectors pt1 , ...,pt8 to
represent a 3D volume in the latent space.

D. Clustering

These 8 vectors are the feature descriptor of the 3D volume
in the latent space. Therefore, we compute the difference
Diffmn between two volumes at the time steps m and n
as the sum of the distances:

Diffmn =

8∑
i=1

(|pmi − pni |), (1)

where |pmi
− pni

| is the Euclidean distance between the 2D
vectors pmi

and pni
. Based on the distance Diffmn between

any two time steps m and n, we use the k-means algorithm
to cluster all the time steps of a dataset.

IV. RESULTS AND DISCUSSION

A. Datasets and Training

We have experimented our approach using a simulation
dataset of contamination of groundwater from nitrogen fer-
tilizers [15]. We used three variables, water content, water
pressure, and water velocity magnitude, in our experiment.
We downsampled the dataset with a dimension of 48×40×8
(length×width×depth). The dataset contains 143 time steps.

We extracted 8 slices in the x-y plane for each volume.
As an input slice is 48 × 40, we scale it on the y axis from

Fig. 2. The network structure of convolutional autoencoder.

(a) (b) (c) (d)

Fig. 3. Example of feature descriptors and volumes: (a) the latent space distribution of feature descriptors of water content in the time steps 5, 16, and 71;
(b), (c), and (d) the volume rendering results of the time steps 5, 16, and 71, respectively.

40 to 48 by linear interpolation. The raw dataset has 143 3D
volumes. As there are 8 slices in each volume, there are in
total 1,144 2D slices as the training dataset. The dimensions
of 3 convolutional layers are 24× 24× 32, 12× 12× 16, and
3× 3× 4, respectively. The network is trained for 100 epochs
with a learning rate of 0.001.

B. Inferencing and Clustering Results

After network training, we fed the 8 slices of each volume
into the network, and collect each respective inferencing result
together as a feature descriptor of the volume (i.e., 8 2D
vectors in the latent space). Figure 3 shows an example of
feature descriptors and volumes. The feature descriptors of
water content in the time steps 5, 16, and 71 are shown
in Figure 3(a), where water content of each time step is
represented as a set of 2D vectors. We can see that the
vectors of the earlier time steps 5 and 16 are relatively close
to each other, while the vectors of the later time step 71
have a distinct distribution. Figure 3(b), (c), and (d) show
the volume rendering results of these three time steps, which
qualitatively reveal that the water content of the time step 71
has a significant change compared to those two earlier stages.

The top image in Figure 4 shows the latent space distribution
of water content’s feature descriptors across all time steps.
We applied the k-means algorithm to cluster these descriptors

into 4 classes using Equation 1 for distance measure. Dif-
ferent classes are labeled with different colors in Figure 4.
Correspondingly, all time steps are partitioned into 4 periods,
0-49, 50-65, 66-89, and 90-142, respectively. The volumes
within each period have similar feature descriptors. Figure 4
also shows the volume rendering result of the representative
time step of each period. We can see the distinct visualization
results among these periods.

The top image in Figure 5 shows the latent space distribution
of water pressure’s feature descriptors across all time steps,
which is significantly different from water content. We also
applied the k-means algorithm to generate 4 clusters. The
clustered periods are different from water content as well, and
consist of the ranges of 0-50, 51-66, 67-128, and 129-142. The
volume rendering results in Figure 5 show the representative
time steps of individual periods of water pressure.

Similarly, we also clustered the time steps according to wa-
ter velocity magnitude. Figure 6 shows the feature descriptors
of all time steps with respect to water velocity magnitude in
the latent space. Based on their distributions, we also clustered
the feature descriptors into 4 groups, and similar time steps
can be grouped together according to their feature descriptors,
as shown in Figure 6. The clustered periods consist of the
ranges of 0-69, 70-80, 81-131, and 132-142. The representative
time step of each period is volume rendered at the bottom of

Time Step 12 Time Step 65

Time Step 71 Time Step 104

Fig. 4. Top: Latent space distribution of water content’s feature descriptors
across all time steps, which is clustered into 4 classes. Bottom: Volume
rendering result of the representative time step of each cluster of water content.

Figure 6.
As described in Section III, our approach can also learn a

feature space by incorporating multiple variables in the 2D
slices. In this case, each entry of a 2D slice contains multiple
values, which can be directly fed into our autoencorder frame-
work. The top image in Figure 7 shows the distribution of the
feature descriptors by leaning all three variables, water content,
water pressure, and water velocity magnitude, across all time
steps. We also clustered them into 4 classes. By considering
more variables, the time steps are partitioned into 6 periods
associated with 4 clusters, as shown in Table I. We can see
that Class 3 has periodically appeared among the time steps.
The bottom of Figure 7 shows the volume rendering results of
the representative time step of each period. In each plot, water
content and pressure are visualized together using multivariate
volume rendering technique. We can see the considerable
similarity among the time steps of Class 3, although they are
distributed among the time steps of other classes.

Time Step 26 Time Step 65

Time Step 87 Time Step 132

Fig. 5. Top: Latent space distribution of water pressure’s feature descriptors
across all time steps, which is clustered into 4 classes. Bottom: Volume
rendering result of the representative time step of each cluster of water
pressure.

TABLE I
CLUSTERING OF TIME STEPS USING ALL THREE VARIABLES.

Class 3 0 3 2 3 1
Time Step Range 0-12 13-55 56-65 66-80 81-129 130-142

V. CONCLUSION AND FUTURE WORK

In this position paper, we demonstrate the feasibility to use
autoencoder with deep convolutional neural network to cluster
the time steps of a scientific dataset. Our preliminary results
show that feature descriptors can be learned for individual
variable and their combinations for a real-world simulation
data. Each time step can be represented as a set of vectors in
the feature space. Using this representation, we can quantify
the distance between the time steps and cluster them into
different groups, where each group has similar patterns. Our
visualization results qualitatively reveal the difference and the
similarity among different classes. Our approach makes it easy

Time Step 21 Time Step 75

Time Step 109 Time Step 137

Fig. 6. Top: Latent space distribution of water velocity magnitude’s feature
descriptors across all time steps, which is clustered into 4 classes. Bottom:
Volume rendering result of the representative time step of each cluster of
water velocity magnitude.

for domain scientists to explore and select time steps from their
large-scale spatial-temporal scientific datasets, as well as help
researchers design new algorithms for data compression and
reduction.

Our preliminary study can be strengthened from multiple
aspects. First, we extract 2D slices from 3D volumes as
the input for network training in this work. The parameters,
such as the number and the orientation of the slices, will be
examined in the next stage. We would also like to investigate
other techniques to represent 3D volumes (e.g., sampling,
multi-resolution representations, etc.), and study their impacts
on performance and quality of learning. In addition, we plan
to study quantitative measures for the quality of our results,
and compare them with other existing approaches. We note
some less optimal clustering results in our current work. We
will explore the usage of different clustering algorithms (e.g.,
DBSCAN [16]) with different cluster numbers on feature
descriptors. The dimension of the latent space will also be

Time Step 7; Class 3 Time Step 30; Class 0

Time Step 65; Class 3 Time Step 73; Class 2

Time Step 101; Class 3 Time Step 137; Class 1

Fig. 7. Top: Latent space distribution of feature descriptors by learning all
three variables, water content, water pressure, and water velocity magnitude,
across all time steps, which is clustered into 4 classes. Bottom: Volume
rendering result of water content and pressure at the representative time step
of each period.

investigated. We will experiment our approach with datasets
generated from different domains, and explore possible sci-
entific meanings and discoveries from clustering results with
domain experts.

VI. ACKNOWLEDGMENT

This research has been partially supported by the National
Science Foundation through grants 1541043 and 14234877,

and by the United States Department of Agriculture through
grants 2017-67021-26248 and 2014-67003-22072.

REFERENCES

[1] H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A fast volume rendering
algorithm for time-varying fields using a time-space partitioning (TSP)
tree,” in Proceedings Visualization’99 (Cat. No. 99CB37067). IEEE,
1999, pp. 371–545.

[2] K.-C. Wang, K. Lu, T.-H. Wei, N. Shareef, and H.-W. Shen, “Statistical
visualization and analysis of large data using a value-based spatial
distribution,” in 2017 IEEE Pacific Visualization Symposium (PacificVis).
IEEE, 2017, pp. 161–170.

[3] C. Wang, H. Yu, and K.-L. Ma, “Importance-driven time-varying
data visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1547–1554, 2008.

[4] C. Wang, H. Yu, R. W. Grout, K.-L. Ma, and J. H. Chen, “Analyzing
information transfer in time-varying multivariate data,” in 2011 IEEE
Pacific Visualization Symposium. IEEE, 2011, pp. 99–106.

[5] L. Nie, A. Kumar, and S. Zhan, “Periocular recognition using unsuper-
vised convolutional rbm feature learning,” in 2014 22nd International
Conference on Pattern Recognition. IEEE, 2014, pp. 399–404.

[6] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of machine
learning research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[7] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder.” in Interspeech, 2013, pp. 436–440.

[8] E. Hosseini-Asl, R. Keynton, and A. El-Baz, “Alzheimer’s disease
diagnostics by adaptation of 3D convolutional network,” in 2016 IEEE
International Conference on Image Processing (ICIP). IEEE, 2016, pp.
126–130.

[9] M. Chen, X. Shi, Y. Zhang, D. Wu, and M. Guizani, “Deep features
learning for medical image analysis with convolutional autoencoder
neural network,” IEEE Transactions on Big Data, 2017.

[10] Z. Zhu, X. Wang, S. Bai, C. Yao, and X. Bai, “Deep learning represen-
tation using autoencoder for 3D shape retrieval,” Neurocomputing, vol.
204, pp. 41–50, 2016.

[11] J. Han, J. Tao, and C. Wang, “FlowNet: A deep learning framework
for clustering and selection of streamlines and stream surfaces,” IEEE
transactions on visualization and computer graphics, 2018.

[12] M. Berger, J. Li, and J. A. Levine, “A generative model for volume
rendering,” IEEE transactions on visualization and computer graphics,
vol. 25, no. 4, pp. 1636–1650, 2018.

[13] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. Nashed,
and T. Peterka, “InSituNet: Deep image synthesis for parameter space
exploration of ensemble simulations,” IEEE transactions on visualization
and computer graphics, 2019.

[14] Y. Bengio et al., “Learning deep architectures for AI,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[15] S. Akbariyeh, S. Bartelt-Hunt, D. Snow, X. Li, Z. Tang, and Y. Li,
“Three-dimensional modeling of nitrate-n transport in vadose zone:
Roles of soil heterogeneity and groundwater flux,” Journal of contami-
nant hydrology, vol. 211, pp. 15–25, 2018.

[16] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

